LTE的核心技术
1、MIMO技术
MIMO作为提高系统传输率的最主要手段,也受到了广泛关注。由于OFDM的子载波衰落情况相对平坦,十分适合与MIMO技术相结合,提高系统性能。MIMO系统在发射端和接收端均采用多天线或(阵判天线)和多通道。多天线接收机利用空时编码处理能够分开并解码数据子流,从而实现最佳的处理。若各发射接收天线间的通道响应独立,则多入多出系统可以创造多个并行空间信道。通过这些并行空问信道独立地传输信息,数据速率必然可以提高。MIMO将多径无线信道与发射、接收视为一个整体进行优化,从而实现高的通信容量和频谱利用率。这是一种近于最优的空域时域联合的分集和干扰对消处理。当功率和带宽固定时,多入多出系统的最大容量或容量上限随最小天线数的增加而线性增加。而在同样条件下,在接收端或发射端采用多天线或天线阵列的普通智能天线系统,其容量仅随天线数的对数增加而增加。
2、高阶调制技术
LTE在下行方向采用QPSK、16QAM和64QAM,在上行方向采用QPSK和16删。高峰值传送速率是LTE下行链路需要解决的主要问题。为了实现系统下行100Mb/s峰值速率的目标,在3G原有的QPSK、16QAM基础上,LTE系统增加了64QAM高阶调制。
3、SC-FDMA技术
SC-FDMA技术是一种单载波多用户接入技术,它的实现比OFDM/OFDMA简单,但性能逊于OFDM/OFDMA。相对于OFDM/OFDMA,SC-FDMA具有较低的PAPR。发射机效率较高,能提高小区边缘的网络性能。最大的好处是降低了发射终端的峰均功率比、减小了终端的体积和成本,这是选择SC-FDMA作为LTE上行信号接入方式的一个主要原因。其特点还包括频谱带宽分配灵活、子载波序列固定、采用循环前缀对抗多径衰落和可变的传输时间间隔等。
4、OFDM技术
OFDM技术LTE系统的主要特点,它的基本思想是把高速数据流分散到多个正交的子载波上传输,从而使子载波上的符号速率大大降低,符号持续时间大大加长,因而对时延扩展有较强的抵抗力,减小了符号间干扰的影响。通常在OFDM符号前加入保护间隔,只要保护问隔大于信道的时延扩展则可以完全消除符号间干扰ISI。
LTE与4G的区别
1、4G 是国际电信联盟(ITU-R)的无线电部门所定义的第四代移动数据技术。LTE 代表“长期演进”,更普遍适用于提高无线宽带速度以满足不断增长的需求的想法。
2、LTE-A是LTE技术的后续演进。LTE俗称3.9G,这说明LTE的技术指标已经与4G非常接近了。LTE与4G相比较,除最大带宽、上行峰值速率两个指标略低于4G要求外,其他技术指标都已经达到了4G标准的要求。还有LTE包括TDD-LTE和FDD-LTE两种制式。
3、LTE是3G与4G技术之间的一个过渡,是3.9G的全球标准。它改进并增强了3G的空中接入技术,采用 OFDM和MIMO作为其无线网络演进的唯一标准。在 20MHz频谱带宽下提供下行100Mbit/s与上行50Mbit/s 的峰值速率,改善了小区边缘用户的性能,提高小区容量和降低系统延迟。
本文地址: https://www.xsyiq.com/31009.html
网站内容如侵犯了您的权益,请联系我们删除。